Cantor versus Harley: Optimization and Analysis of Explicit Formulae for Hyperelliptic Curve Cryptosystem

نویسندگان

  • Thomas Wollinger
  • Jan Pelzl
چکیده

Hyperelliptic curves (HEC) look promising for cryptographic applications, because of their short operand size compared to other public-key schemes. The operand sizes seem well suited for small processor architectures, where memory and speed are constrained. However, the group operation has been believed to be too complex and thus, HEC have not been used in this context so far. In recent years, a lot of effort has been made to speed up group operation of genus-2 HEC. In this contribution, we increase the efficiency of the genus-2, genus-3, and genus-4 hyperelliptic curve cryptosystem (HECC). For certain genus-3 curves we can gain almost 80% performance for a group doubling. This work not only improves Harley’s algorithm [1], but also improves the original algorithm introduced by Cantor [2]. Contrary to common belief, we show that it is also practical for certain curves to use Cantor’s algorithm to obtain the highest efficiency for the group operation. In addition, we introduce a general reduction method for polynomials according to Karatsuba. We implemented the most efficient group operations on Pentium and ARM microprocessors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast explicit formulae for genus 2 hyperelliptic curves using projective coordinates (Updated)

This contribution proposes a modification of method of divisors group operation in the Jacobian of hyperelliptic curve over even and odd characteristic fields in projective coordinate. The hyperelliptic curve cryptosystem (HECC), enhances cryptographic security efficiency in e.g. information and telecommunications systems (ITS). Index Terms – hyperelliptic curves, explicit formulae.

متن کامل

Efficient Arithmetic on Genus 2 Hyperelliptic Curves over Finite Fields via Explicit Formulae

We extend the explicit formulae for arithmetic on genus two curves of [13, 21] to fields of even characteristic and to arbitrary equation of the curve. These formulae can be evaluated faster than the more general Cantor algorithm and allow to obtain faster arithmetic on a hyperelliptic genus 2 curve than on elliptic curves. We give timings for implementations using various libraries for the fie...

متن کامل

Improvements of Addition Algorithm on Genus 3 Hyperelliptic Curves and Their Implementation

Genus 3 hyperelliptic curve cryptosystems are capable of fast-encryption on a 64-bit CPU, because a 56-bit field is enough for their definition fields. Recently, Kuroki et al. proposed an extension of the Harley algorithm, which had been known as the fastest addition algorithm of divisor classes on genus 2 hyperelliptic curves, on genus 3 hyperelliptic curves and Pelzl et al. improved the algor...

متن کامل

Suitable Curves for Genus-4 HCC over Prime Fields: Point Counting Formulae for Hyperelliptic Curves of Type y2=x2k+1+ax

Computing the order of the Jacobian group of a hyperelliptic curve over a finite field is very important to construct a hyperelliptic curve cryptosystem (HCC), because to construct secure HCC, we need Jacobian groups of order in the form l · c where l is a prime greater than about 2 and c is a very small integer. But even in the case of genus two, known algorithms to compute the order of a Jaco...

متن کامل

Implementation of Tate Pairing on Hyperelliptic Curves of Genus 2

Since Tate pairing was suggested to construct a cryptosystem, fast computation of Tate pairing has been researched recently. Barreto et. al[3] and Galbraith[8] provided efficient algorithms for Tate pairing on y = x − x + b in characteristic 3 and Duursma and Lee[6] gave a closed formula for Tate pairing on y = x − x + d in characteristic p. In this paper, we present completely general and expl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004